
Technology is Not Values Neutral: Ending the Reign of Nihilistic Design
We fail to take tech seriously when we do not grasp its full impact on humans | Jun 26, 2022 | 25 Min Read
The continuing COVID-19 pandemic impels the world to question how it will be possible to recover. Leaders attempt to boost confidence with “hopeful” messaging. But poor public understanding is beset by contradictions from public health officials. The tone of ambivalence from experts creates an appearance of half-truths and an approach of half measures. Making sense of the science requires embracing a level of uncertainty and the flexibility to change paradigms as better evidence emerges. Although the complexity of dynamic experimental research may be challenging to convey, poor public communication erodes an already diminished trust in institutions and science.
The public wants to make informed choices about their own health, but information for even the scientifically fluent and information savvy, is scarce and confused. Before getting vaccinated or complying with any number of potentially risky public health recommendations, people want to better understand the scientific rationale behind vaccine policies, the possible trajectory for viral evolution, and risks posed to human health. Navigating the coronavirus pandemic also requires careful helmsmanship through the COVID-19 infodemic. Transparent and unvarnished communication is a start. “This too shall pass” doesn’t work here. Society cannot wait for this one to pass. This article describes the complexity of viruses and attempts to detail elements about the novel coronavirus that may be relevant but ignored in the scientific public discourse.
“All our science, measured against reality, is primitive and childlike - and yet it is the most precious thing we have.” —Albert Einstein
Viruses are still largely mysteries, even to scientists. It is often debated whether or not they are really living, since they lack many of the characteristics that describe life.[1][2] Viral genetic diversity is difficult to characterize because viruses lack conserved genetic markers that are often used to understand relatedness in cellular organisms.[3][4] They infect all forms of living cells, from animals to bacteria, and are significantly represented in symbiotic organisms, such as corals.[5] They have largely been thought of as parasitic, but some do behave as mutualistic organisms. The evolution of placental mammals is attributed to a mutualistic retrovirus.[6] In fact, they are heteronomous, in that they have diverse life cycles, and they can even be advantageous,[7] although they are more often known for their harmful attributes. SARS-CoV-2, the newest notable in a family of notorious RNA viruses, is well recognized as a nasty example. Its most incredible feature, as an RNA virus, is its ability to change.
In general, hundreds of viruses spillover from other organisms to infect people,[8] but most of these spillover events result in a failure to launch. If viruses do make it, they often take an unremarkable path to rapid obsolescence.[9] Only about half of spillover viruses are even transmissible (the capacity to be passed on to new hosts).[10] Mostly, a virus lies in wait for a viable host, teetering on the brink of extinction and then falling off. The majority die out due to a lack of a compatible host. Viruses need a partner to function since they lack much of their own biological components for replication. Viruses find a host, but if the host is a recluse and hasn’t many friends to introduce to its companion pathogen, it dies out, as well. A successful virus is one that meets a compatible host – and the ideal host candidate is one that is extremely social, existing in continual close proximity to others of its kind so that the virus can jump from one reservoir to the next without much demand for a sophisticated strategy or need to adapt its script. Humans have made the perfect vector for SARS-CoV-2. Our inherent socialization and population-dense habitats, coupled with our technology-boosted mobile lifestyles, make us some of the most efficient viral dispersers known to life.
Humans are the perfect host for a virus like SARS-CoV-2. Its lethal variability can make it appear benign to those who are asymptomatic or only experience a mild case, which enables it to spread so widely. Human social behaviors empower it to spread and may even affect how it mutates. Whether it becomes milder or more dangerous is unclear.
SARS-CoV-2 superficially appears indistinguishable from legions of other respiratory pathogens, in part because it imparts common symptoms. The potential harm of SARS-CoV-2 has been underestimated by some, its pathogenicity mistaken for superficial similarities of more familiar illnesses such as the flu and the cold. A COVID-19 infected person may experience nothing, or a rattling of the lungs and fever or chills, but for others it is much more deadly. Its variable lethality makes it hard to characterize, leading some to misjudge and make those who have only seen mild cases believe it only badly afflicts a limited demographic. But COVID-19 has proven to be severe or lethal in nearly all demographics, even though predominantly the weak and vulnerable are its most visible targets. Moreover, many infected people, including those with mild cases early on, can experience long-term health consequences from the virus, sometimes with serious effects that do not immediately appear. This seemingly ordinariness to many is part of its maleficence. It is a Trojan horse, hiding in plain sight.
The COVID-19 virus’ stealthiness and its ability to disguise itself as benign or mild in a vast number of cases, or not presenting at all for pre-symptomatic and asymptomatic cases, allows it to silently jump into new carriers without alerting the host of its presence. It is extremely competent at replication, creating unwitting super-spreaders. This allows the virus to continue circulating through the population, silently replicating, exploiting human weakness, readily adapting, and spreading all the more. This is in contrast to its close cousin SARS-CoV-1 (sometimes referred to as just SARS or SARS “classic”), which during its own pandemic moment in 2002-2004, was so evidently virulent that it was easily identifiable. SARS classic was so conspicuous, it made it relatively facile to suppress,[11] much like a heavy-footed hobbling assassin who lacks any element of surprise.
Understanding viral evolution can help predict the trajectory of a pathogenic virus in order to develop useful management strategies. But given the diversity among viruses and selective pressures provided by the host environment, it is hard to generalize. Transmissibility (discussed above) and virulence[12], or the virus’ ability to cause harm to the host, are two important factors that govern outcomes for the host. How to measure virulence is still debated, particularly with respect to teasing out theory and empiricism in viral evolution.[13][14] From a theoretical position, virulence is usually captured in models as mortality, while experimental formulations exist within a range of sublethal measures that are much harder to quantify and unite in analyses. This creates a gap between observed versus theoretical knowledge of virus virulence, particularly between species. Generalizing whether a virus will become more or less lethal on the basis of inputs and interventions from what is known of other viruses is disputed.
The term “trade-offs” between different aspects of viral fitness was first introduced to explain various patterns in severity of pathogenicity.[15][16] A classic view originally held by biologists was that virulence should decrease over time, reaching an equilibrium preserving optimum fitness for the virus, based on the evolutionary reasoning that the virus would not benefit from being too harmful to its hosts, because exterminating the host would inhibit its spread. This would result in a die-out of the virus.[17] The logic makes a reciprocal assumption, where increased transmissibility, or a more infectious virus, should result in a milder virus, because if viral hosts are less sick, they are more likely to be moving around and exposing the virus to new potential hosts. Therefore, viruses that spread more easily, or are more transmissible, should leave more descendants, or be more evolutionarily fit. Likewise, those that too easily kill off their hosts will not replicate as readily and be less fit. The argument follows that a virulent virus should tend towards less virulence over time. This would mean that viral pandemics would eventually resolve through a natural lethal recession, leaving people sick but not dead, or not sick at all.
This cost-benefit trade-off is thought to be exemplified by theoretical models in animals for malaria.[18][19] There are several examples where human pandemics were lethal but then receded towards a more benign illness. Some use SARS-CoV-1 as an example of such a case, but recession in many cases, like SARS classic, had more to do with containment strategies and other behavioral interventions which led to eventual viral suppression. Moreover, in experimental settings for vaccine development, SARS-CoV-1 regained fitness, becoming more virulent after a period of recession.[20] In other cases where virus virulence was reduced over time, such as the flu, a level of host immunity had developed after continued long term exposure or with polio, from widespread vaccination. In the specific case of the flu, a lifetime of exposure has built up immunity for almost everyone today from continual exposure since birth.
Trade-offs could be a function between several fitness factors, although evolutionary geneticists argue that the transmission-virulence trade-off has little empirical support.[21][22] There is still limited understanding of trade-off dynamics. What is known is that virulence does evolve in pathogens. This means that viruses can become more or less lethal due to environmental conditions that drive the evolutionary process.[23] In several experimental evolution studies, serial passage of viruses increases virulence in new hosts from intra-host competition, meaning that viruses can evolve to become more dangerous within hosts. One postulate is that increasing lethality in hosts is due to competition with new viral strains existing within the host.[24][25]
If there is no selective pressure on a host to “self-limit” its virulence, a virus will remain virulent and can become even more lethal. Hypothetically, an abundance of excess vectors – or the abundance of available hosts, could eliminate the pathogen’s need for hosts to survive and maintain the virus’ lethality. Humans can seed the environment with conditions that optimize viral fitness if the virus is capable of adapting. In the case of a disease like COVID-19, it is postulated that if enough people exist for the virus to easily pass from one host to the next, especially if they are moving around a lot and in close proximity to one another, then there is no selective pressure for the virus to reduce its virulence. The virus might not have to become milder in order to transmit well. Some argue the virus risks losing its own competitive advantage to a more aggressive viral strain, better at siphoning resources from the host, optimizing replication;[26] therefore, maintaining its virulence may be more advantageous.
Scientific understanding of evolutionary frameworks has changed with the advance of molecular technologies. Instead of simplifying what is known about viruses, it highlights the added complexity and how much more there is to know.
Trade-off models typically assume that a virus can evolve unbounded, but viral evolution is limited to maximal rates of entry, replication, viral assembly, and spread within the host. Defense responses within the host should bound the virus’ virulence and ultimately impact a virus’ success on a population level.[28][29] This is not a certainty, however, and many factors change these variables. If the virus is allowed to mutate freely within the host because it has learned to bypass the immune surveillance of the host, or if it is exposed to selective pressures from competition of more aggressive mutant variants that may have evolved, then the virus may be less bounded and become more virulent. There is still little known about these evolutionary boundaries, but empirical observations reveal the complexity of some of these controls, including adaptations adjusted to optimize within-host competition, an interplay with host immunity, and changes in transmission.[30] There is a misconception that a more virulent virus is more threatening than one with greater transmissibility. But a more transmissible virus allows for a greater abundance of mutants to arise, enriching a pool of potentially new variants that are better adapted to evade the human immune system or become more lethal. Trying to understand which direction the virus will go—more or less virulent and more or less transmissible—is a conundrum at the moment. The only certainty is uncertainty for this problem. Andrew Read, an evolutionary microbiologist at Penn State University, comments on the trajectory of SARS-CoV-2 evolution: “It (the virus) can get nicer, and it can get nastier.” Edward Holmes, an evolutionary virologist at the University of Sydney, Australia, reflects similarly: “One thing you learn about evolution is never to generalize.”[31]
Viruses reproduce asexually with ruthless efficiency by hijacking a host’s cellular apparati, bypassing the need to make or support their own costly metabolic investments. Due to the lack of biological overhead, they can replicate with unparalleled celerity and change evolutionary course without too much drag on their system.[32] RNA viruses are even more evolutionarily competent at facing operational challenges. Instead of existing as a single genotype, they function as a collection of related genetic sequences, termed “quasi-species”, where fitness is determined by an increased ability to mutate rather than efficiency at replication.[33][34]
Mutation and selection are what enable evolution to take place, but high mutation rates are typically unfavorable for most organisms because they often result in nonviable offspring. Classic biological “fitness” optimizes existing genetic variation through natural selection, rather than runaway mutation. Increasing mutation rates can be lethal in sexually reproducing organisms, but for RNA viruses, it may enhance diversity. This is accomplished by a critical threshold where RNA viruses exist known as “error catastrophe,”[35] defined as the upper boundary between the genetic stability of a population and fidelity of replication, or the error rate enabling mutations.[36] For RNA viruses, high mutation rates of RNA replication drive genetic evolution by readily manufacturing new variants, consequent to a lack of “proofreading activity” of the virus’ replicating apparatus.[37][38] The thin boundary between genetic variants enables RNA viruses to be “cooperative”— profiting from a pool of mutations and allowing quasi-species mutants to rapidly select against environmental pressures.[30] The quasi-species theory supposes that the short-term cost of individual mutation is benefited by population-level adaptability.[40] High mutation rates have allowed for the proliferation of RNA viruses,[41] arguably rendering them the most successful biological organisms.[42][43] Virulence is believed to be enhanced when there is quasi-species diversity.[44][45]
The real danger of the virus is not singularly its lethality, but also its capacity to adapt, evade the human immune system, and stealthily proliferate.
SARS-CoV-2 is an RNA virus, which describes how it replicates. RNA viruses are advantaged to readily proliferate and adapt. Replicability, transmissibility and adaptability are what make SARS-Co-V-2 so powerful. It is unclear how the evolution of viral quasi-species will develop for the COVID-19 pandemic.[46][47][48][49] The big danger is whether the virus will evolve to become more transmissible and/or more virulent. Evolution is the COVID-19 virus’ weapon. Misappropriated focus is sometimes placed solely on morbidity rates of the virus’ victims, causing some critics to downplay the pandemic. Death rates are, of course, extremely important, but it is also important to reimagine the real threat of the virus and how it is publicly framed. Morbidity is not the only signal-variable to consider.
Emerging evidence and the appearance of mutant variants cropping up all over the globe provide evidence that the COVID-19 virus is, indeed, changing, it is changing faster than many expected, and the various mutants are readily being distributed far and wide.[50] It is also “learning” from hosts, raising concerns for immune escape, a process that allows viruses to bypass immune surveillance and avoid detection. Recent findings of an immune-compromised patient who cultivated SARS-CoV-2 viral cultures within his body for 154 days helped researchers get a different view of how the virus is changing. Rather than representing a case of reinfection, where the patient is infected, clears the virus, and is infected again, this patient harbored the virus, where it intermittently attacked and receded, giving the virus insight into the weakness of human immune systems and letting it adapt.[51] The patient eventually died. Genetic sequence of the virus over time using molecular amplification technologies showed that the COVID-19 virus evolved inside the patient, acquiring at least 20 mutations, a significant adaptive capacity. These mutations, if passed on, might help variants develop more sophisticated strategies to evade the human immune system.
Global movement (travel, trade, etc.) has vastly improved virus vectorization and helped give rise to new COVID-19 variants. This is unprecedented, as this is the first pandemic where technology has amplified the ability for global spread at present speed and magnitude, coupled with the enormous density of potential vectors inhabiting every biome. A mix of optimal Goldilocks conditions for the virus multiply the capacity for this pandemic to develop beyond the normal biological capacities that have driven past pandemics.
Even more troubling is our lack of understanding for how this virus behaves. New strains are the culprits in revisited pandemic hotspots that had already been devastated by COVID-19. Manaus, Brazil, located along the rainforests of the Amazon, had been ravaged by the disease earlier in 2020 with three-quarters of the city’s inhabitants infected by SARS-CoV-2. Again, a new wave is devouring the area. This reemergence of deadly outbreak in communities assumed to have developed immunity is concerning and raises doubt about immune durability, reinfection, and whether new variants are evolving escape mechanisms from immune defenses.[52][53]
Mutations to the COVID-19 virus enhance vaccine skepticism, with questions looming about immunity against competently adaptive variants.
Vaccines have been heralded as the panacea to pandemic woes, but researchers wonder if new strains will become vaccine resistant. COVID-19 is a totally novel virus and humans are a naïve population without immune defense. Even if humans build up some level of durable immunity against SARS-CoV-2, it is not clear how long it will last, how strong it will be, and whether a full complement of immune defenses can be built to outpace the virus’ ability to learn the immune system and adapt against it. Humans have had no previous relationship with the virus, therefore it is impossible to know exactly how the immune response will develop.[54] In addition to vaccine resistance or a lack of long term immunity, there could be other physiological effects, such as Antibody Dependent Enhancement, where previous exposure to viral antibodies could enhance a severe response upon new infection. ADE is possible in coronaviruses, but it is not clear that this is yet a problem for SARS-CoV-2.[55][56] Due to the many ways in which the virus could change for the worse, policies to immediately reduce transmission have been prioritized, even if it is unknown if they are yet fully effective.
While it would appear understandable that much of society believed the barrier to controlling the pandemic would be technological, with the development of a viable vaccine being the key step, the main issues are largely logistical. Distribution management has impeded a speedy public health policy response, with other factors that are case-specific challenges. Governments, markets, and poor scientific communication are part of this impasse, which is being addressed. Such delays have prompted some health officials to consider extending second dose intervals to reach more people for those vaccines requiring multiple doses. Public health officials argue that unchecked spread of the virus poses the greatest risk, particularly in light of its capacity to mutate and its high mortality rates. Therefore, it is better to offer some immunity sooner rather than stronger immunity to a smaller segment of society.[57][58] Many believe that upgrades and boosters will help where initial doses leave off.[59] Vaccine optimists see multivalent vaccines effective against potential emerging variants. Criticism about changing dosing regimen has left the scientific community divided.[60] This science becomes confusing due to the quantity of different vaccines and the variances in efficacies, defined experimentally before results are published.
Two opposing vaccine strategies for extending second doses offer different advantages and come with different risks. One argues for “quantity” – or more people immunized faster to try to suppress replication as quickly as possible. The second advocates for “quality,” which provides greater immunity to fewer people initially following known dosing regimens from experimental drug trials in the hopes that speed does not compromise quantity. The former is a proposed strategy in the United Kingdom for the AstraZeneca vaccine, while the United States endorses the latter.
Many scientists argue that quantity does not equal quality.[61] A large portion of public health scientists have vigorously argued against altering a known effective dosing regimen.[62][63] They argue that changes are risky in the absence of knowledge of vaccine durability and its efficacy under these modifications. Some argue that recommendations to government are based on assumptions rather than from trial data, such as those given by the Joint Committee on Vaccines and Immunization (JCVI) and the UK Chief Medical Officers in Great Britain.[64] Biologists warn that mRNA, used in the genetic vaccines by Moderna and Pfizer, is quickly degraded by cellular enzymatic systems (RNAases), and that although alterations have been made to the molecules to improve the delivery and longevity of the vaccines, there are no data on how long a clinically effective immune response induces after just a single injection.
The predominant argument is that the faster more people can be immunized, irrespective of vaccine efficacy, the lower the probability for new variants to proliferate since replication is a necessity for new variants to develop. Partial protection is satisfactory if it meets the goal to eliminate deaths and reduce hospitalizations and severe cases, which the vaccines are purported to do if dose regimens from clinical trials are followed. But incomplete protection can also provide an environment for new strains to adapt to become more dangerous and thrive. It is not clear if current strategies will succeed at slowing viral transmission before more dangerous mutants take root and uncontrollably spread.
While it is still unclear what the long term effects of the vaccines are, they have thus far demonstrated to be relatively safe, according to data from trials and rollouts. Many health care professionals argue that vaccines are much safer than contracting COVID-19. But a lack of clarity about the many vaccines on the market has the public reticent to enroll. How the vaccines provide protection varies and their relative efficacies are confusing. While some of the confusion about efficacy has more to do with technical aspects of clinical trial protocols and metrics for end points rather than absolute efficacies, there are mechanistic differences between different vaccines that may carry different long term risks.[65] Moreover, it has yet to be established that all vaccines stop the chain of transmission, which counters the predominant belief that vaccines provide complete personal protection.[66] Some biologists warn that seeding a pool of millions of people with weakened antibodies providing only a meager immune response will accelerate the creation of variants that will learn how to mutate around defense systems.[67] Moreover, mutations can proliferate due to poorly executed policy half-measures. New, more virulent or vaccine resistant strains are realistically probable outcomes.[68]
For much of the general public, the value of certain pandemic interventions is focused on individual outcomes, whereas most public health experts target population-wide benefits.
Pandemic management requires consideration for individuals and populations. Minimizing individual deaths and protecting hospitals from ICU overwhelm has been a primary concern for public health experts. Public health strategies have also attempted to control population-wide transmission with lockdowns, vaccine strategies and a variety of other pandemic policies based on the rationale that the more the virus is given free rein to transmit widely, the more chances it has to develop its evolutionary fitness and mutate. This argument is nuanced rather than a binary debate because strategies need to tailor to specific conditions. The pandemic requires swift action based on partial information with many confounding variables for which much cannot be fully controlled. There will not be immediate scientific certainty for long-term risks. Ultimately, things will be boiled down to tradeoffs—where the risk of unknown outcomes will be weighed against known catastrophes.
Another part of the rationale to vaccinate as many people as possible is to create herd immunity. The term is regularly thrown into optimistic projections about a post-pandemic return to normality, often without full understanding of what it means, its potential and its limits. Herd immunity is a key component of epidemic control, in that only a certain percentage of the population needs to be immune to provide a protective effect to the whole community if herd immunity is reached. That quantity of immunized population varies from disease to disease and has been realized in the past artificially through vaccination. It creates a “shield,” or indirect protection, so that transmissibility becomes reduced and large outbreaks are controlled as fewer people are infected and unable to pass on the disease, with the goal of a natural die-out of the pathogen. It reduces the number of vaccinated people needed to protect the population, but it also provides alternative protection for the ineligible to receive vaccines.
“Natural herd immunity” is often conflated with “artificial herd immunity.” Natural herd immunity occurs over time—usually over the course of many lifetimes. The theory that natural herd immunity could be stimulated for COVID-19, promoted by fringe thinkers, advocacy think tanks and a few governments, created much confusion about the realistic possibility for such a suggestion. Trying to create natural herd immunity by unconstrained transmission is largely viewed as a dangerous proposition with no data to support it, historically or contemporaneously, with what we know of COVID-19 by the global scientific community.[69] Yet the prospect of it circulated widely, even in scientific journals, in part due to a highly derided proposition put together by three scientists accused of “advocacy science,” captured in a manifesto known as “The Great Barrington Debate.” Countless scientific groups from around the world condemned this proposition and said that this is not a debate within the scientific community.[70][71]
Herd immunity is largely misunderstood by the public. This is due, in part, to “advocacy science,” where individuals are paid to promote undemonstrated theories as science. Other sources of confusion come from synonymous referencing to different phenomena, such as “artificial herd immunity” and “natural herd immunity.”
Artificial herd immunity (through vaccination), a demonstrated methodology for pandemic control, and natural herd immunity as a theoretical pandemic intervention, are confused in the media and scientific journals because they are not clearly distinguished as two separate phenomena and are sometimes both just referred to as “herd immunity.” When scientific debate occurs around “herd immunity” for vaccinations, it can be confused for natural herd immunity. Natural herd immunity, before COVID-19, was discussed mainly in regard to livestock disease and laboratory experiments. For humans, herd immunity became popularized when some protection was afforded to unvaccinated children during the measles outbreak from the majority of vaccinated population.[72] The ability for herd immunity to function in the absence of a strong vaccine campaign is still uncertain. Even if it were to work, it requires several important variables to operate in an expected manner, beginning with long-term, durable immunity against the various strains of extant virus. This is far from being a clear case for COVID-19.
Science has made incredible progress developing vaccines. Some public sentiment is concerned that vaccine development occurred at such unprecedented pacing, but many working on the vaccine had begun with a head start working on viral vaccines for other pandemics, including that for SARS-CoV-1. Many elements of the mRNA vaccine had been studied during the first SARS pandemic. Most virologists anticipated some sort of global pandemic at some point in the future – a topic long discussed in science but ignored by the public at large since it was not a palpable and immediate dilemma. Still, concerns with long-term population effects are merited, since Phase III trials were rolled out quickly and were limited to specific criteria and segments of the population.
Understanding viral evolutionary dynamics is key to coordinating a pandemic exit strategy. Viral suppression is effective,[73] as witnessed with the ancient plagues to SARS-CoV-1,[74] Marburg and Ebola,[75][76] and regional controls for SARS-CoV-2.[77] Suppression reduces hospitalizations and deaths, as well as making contact tracing and isolation strategies more manageable because of a lower viral reproduction. There are a number of different suppression strategies to stop the chain of viral transmission. Their success is dependent upon the characteristics of the virus and behavior of the host community.
With so many unknowns, it can be difficult to differentiate between critical thought and unfounded conspiracy theory. It is increasingly more difficult to engage in healthy debate and make the necessary, iterative steps toward understanding.
Knowing how to navigate some of the more basic problems should be easier in a technologically advanced society, but for COVID-19, this is not proving to be the case. Science communication has always been a challenge but increasing social distrust is making it harder to parse the emerging science. Many science communication initiatives have tried to clear up COVID-19 misinformation, but there is much questionable advice from the infosphere. It is often unclear where to turn to get current, accurate information. No one can reliably predict how the virus will evolve or how it will respond to the many vaccines. But we do know that human actions shape the environment of any virus, providing selective pressures that might modulate the virus either way. There will be no known certainty about long-term effects until we have lived with the virus long term. In the end, most debates will be reduced to risk-benefit trade-offs based on partial information rather than any certainty.
Public skepticism in the era of COVID-19 is understandable. Medical racism, early-stage vaccination experiments in developing countries, and a history of ethically questionable practices has understandably fueled distrust for institutionally mandated “for-profit” health interventions. These concerns should not be ignored or patronized, particularly when scientists and medical practitioners apply a “just trust me” attitude, circumventing nuanced explanation when the public has questions—sometimes due to the complexity of the issue, but sometimes from a superiority-complex projection that the public “can’t understand.” Improving public messaging will help people make choices, even if they are imperfect choices.
There is a thin, but critical line between healthy skepticism and paranoid conspiracy leaning. Due to knowledge outsourcing, society is structured in such a way that we relinquish a certain level of understanding to the authorities, providing trust to those to whom we cede this power. This provides a paradox, where society tells us to trust the experts. They have training and experience. But we are warned, there are bad actors attempting to manipulate or harm us—many of them institutional. We must learn to think critically and independently. We must stop being sheeple, we are told.
“Ignorance feeds on ignorance.”—Carl Sagan
Trust in institutions, especially for science, is diminishing. Even if society is expected to trust scientists, which scientists should they trust? Social theorist of late modern society, Ulrich Beck, evaluates a modern “risk society” where shared tragedy-of-the-common “threats” are determined to be real, but shared “risks” are formulated by a “manufactured uncertainty,” from government, science, the market, and the media.[78][79] While we continue to rely on experts to support risk decision-making that should be based on evidentiary practices, society is trending towards ideology and value-driven sentiment steered by politics and culture. There is a dire need for society to embrace an agnostic “culture of uncertainty” to facilitate an open dialogue, but our trained thought leaders need to improve their communications to the public.
There are many reasons why scientific communication is so hard. The scientific community has arduously sought to bridge the gap between scientists and the public at large and has largely been unsuccessful. Unfortunately, most approaches to scientific reporting occupy two poles—the inchoate, codified peer-reviewed scientific literature, or overly simplified popular science. Popular science and other forms of scientific communication are limited in their scope to accurately describe the complexities of many scientific systems; therefore, they are incomplete in their ability to inform good decision-making. Some websites and specialty blogs provide excellent brief explainers of certain issues, but they have been criticized for being spectacularly unscientific, scientifically vague or too superficial.[80] The more sophisticated details, (i.e., the data, more complex concepts, nuanced results) which provide the opportunity for individual reflection to parse problems are often omitted. Controversial or disputed topics are rarely informed by both sides slamming the opposition. Synthesis of the varying sides rarely occurs.
Academic journals and renowned scientific magazines like Science, Nature, JAMA and others do a great job of featuring investigative scientific reporting, but are not devoted to the task since their primary focus is peer-reviewed scientific research. Academic journals are also less likely to speculate or report on unproven topics, often (but not always) ignoring compelling arguments that are not empirical, even when evidence provides a good basis of preliminary discussion. Academic journals are space-limited with too much competing science to pursue topics that are not well substantiated, even if the topic is more than a fringe view. The excellent reporting done from prominent academic journals often does not capture the attention of the public.
Science is also hard to communicate because of the polarization of how scientists are ethically perceived, often either as impervious to error, or indoctrinated, mad and manipulative. Scientists push this stereotype, renowned for claiming that one cannot cheat the data and enshrining science as an infallible methodological practice. This claim is spurious, because even with the best practices, science is still framed and analyzed through the human filter. There is no standard handbook of scientific procedure, even though there are methodological guidelines. Sampling biases and statistical errors often arise from faulty assumptions and missing data, among other factors. Numeracy errors (i.e.,the correct math but incorrect measures, measuring false equivalencies, etc.), miscalculations, unrepresentative reporting of data, omissions, methodological errors, experimental biases, and statistical flaws are all ways in which science can go wrong. Still, the scientific methodology is resiliently reliable. But when scientists assert a superior sense of infallibility, omit explanations, or use too much complicated jargon to render themselves incomprehensible, they lose public trust.
The scientific methodology is powerful, but what are its limits?
Understanding some key factors that contribute to the earnest misunderstanding of science can help one better assess the scientific argument. Some initial guiding principles are:E3(see Addendum for more detailed explanations and examples)
Managing ecosystem-scale societal issues, such as pandemics, biodiversity collapse, climate change, wildfires, and pollution, and winnowing fact from assumptions that appear as fact, or all-out conspiracy theories, necessitates better understanding of the science governing these processes. Science is arguably one of the most important area for society to comprehend, as it underlies many of our most significant policy issues and determines quality of life for all, yet it is one of the area least understood and most vulnerable to misinformation. Science is a low-yield endeavor, often making wrong turns before hitting on the right path. Society needs to allow scientific knowledge to develop through trial and error. Meanwhile, scientists need to communicate effectively—to root out the fringe opportunistic advocacy campaigns that erode trust generally, and to communicate transparently and clearly to the public. Trust is at the root of this progress.
COVID-19 is a powerful organism advantaged by its cooperative “quasi-species” function. Humans have also been given advantages as a collective species. It is through collective action that human society will overcome the pandemic.
Civilization can seem infinitely durable, particularly as science and technology accelerate. It often seemed an inevitability that life in the modern era would continue positively trending—until COVID-19 disrupted this notion by exposing societal fragility in everyday life. It is not clear what the right answer is for a strong public health vaccine strategy or how to safely exit this pandemic. Even if some vaccines provide us with hope, they alone won’t end the global battle against SARS-CoV-2 and other similar, imminent existential threats. What is apparent is that whatever we do, our collective action will affect our society, despite our individual incentives. Some nations have seen success at mitigating the worst aspects of the pandemic compared to the vast majority of the globe. There is no singular approach to which such successes can be attributed, since each nation differs in demography, culture, governance, economy, and other factors. But in the cases where the pandemic was effectively controlled, there was a preponderance for societal cooperation and compliance to governing policies. This approach need not be authoritarian. In an open society, cooperation comes from effective public communication and institutional trust. SARS-CoV-2 has proven to be robust, in part due to its own ability to cooperate as a quasi-species. Humans need to remember that cooperation is key to our success as a species, too.
The noun was coined by the American ecological psychologist James J. Gibson. It was initially used in the study of animal-environment interaction and has also been used in the study of human-technology interaction. An affordance is an available use or purpose of a thing or an entity. For example, a couch affords being sat on, a microwave button affords being pressed, and a social media platform has an affordance of letting users share with each other.
Agent provocateur translates to “inciting incident” in French. It is used to reference individuals who attempt to persuade another individual or group to partake in a crime or rash behavior or to implicate them in such acts. This is done to defame, delegitimize, or criminalize the target. For example, starting a conflict at a peaceful protest or attempting to implicate a political figure in a crime.
Ideological polarization is generated as a side-effect of content recommendation algorithms optimizing for user engagement and advertising revenues. These algorithms will upregulate content that reinforces existing views and filters out countervailing information because this has been proven to drive time on-site. The result is an increasingly polarized perspective founded on a biased information landscape.
To “cherry pick” when making an argument is to selectively present evidence that supports one’s position or desired outcome, while ignoring or omitting any contradicting evidence.
The ethical behavior exhibited by individuals in service of bettering their communities and their state, sometimes foregoing personal gain for the pursuit of a greater good for all. In contrast to other sets of moral virtues, civic virtue refers specifically to standards of behavior in the context of citizens participating in governance or civil society. What constitutes civic virtue has evolved over time and may differ across political philosophies. For example, in modern-day democracies, civic virtue includes values such as guaranteeing all citizens the right to vote, and freedom of culture, race, sex, religion, nationality, sexual orientation, or gender identity. A shared understanding of civic virtue among the populace is integral to the stability of a just political system, and waning civic virtue may result in disengagement from collective responsibilities, noncompliance with the rule of law, a breakdown in trust between individuals and the state, and degradation of the intergenerational process of passing on civic virtues.
Closed societies restrict the free exchange of information and public discourse, as well as impose top down decisions on their populus. Unlike the open communications and dissenting views that characterize open societies, closed societies promote opaque governance and prevent public opposition that might be found in free and open discourse.
A general term for collective resources in which every participant of the collective has an equal interest. Prominent examples are air, nature, culture and the quality of our shared sensemaking basis or information commons.
A general term for collective resources in which every participant of the collective has an equal interest. Prominent examples are air, nature, culture, and the quality of our shared sensemaking basis or information commons.
The cognitive bias of 1) exclusively seeking or recalling evidence in support of one's current beliefs or values, 2) interpreting ambiguous information in favor of one’s beliefs or values, and 3) ignoring any contrary information. This bias is especially strong when the issues in question are particularly important to one's identity.
In science and history, consilience is the principle that evidence from independent, unrelated sources can “converge” on strong conclusions. That is, when multiple sources of evidence are in agreement, the conclusion can be very strong even when none of the individual sources of evidence is significantly so on its own.
While “The Enlightenment” was a specific instantiation of cultural enlightenment in 18th-century Europe, cultural enlightenment is a more general process that has occurred multiple times in history, in many different cultures. When a culture goes through a period of increasing reflectivity on itself it is undergoing cultural enlightenment. This period of reflectivity brings about the awareness required for a culture to reimagine its institutions from a new perspective. Similarly, “The Renaissance” refers to a specific period in Europe while the process of a cultural renaissance has occurred elsewhere. A cultural renaissance is more general than (and may precede) an enlightenment, as it describes a period of renewed interest in a particular topic.
A deep fake is a digitally-altered (via AI) recording of a person for the purpose of political propaganda, sexual objectification, defamation, or parody. They are progressively becoming more indistinguishable from reality to an untrained eye.
Empiricism is a philosophical theory that states that knowledge is derived from sensory experiences and relies heavily on scientific evidence to arrive at a body of truth. English philosopher John Locke proposed that rather than being born with innate ideas or principles, man’s life begins as a “blank slate” and only through his senses is he able to develop his mind and understand the world.
It is both the public spaces (e.g., town hall, Twitter) and private spaces where people come together to pursue a mutual understanding of issues critical to their society, and the collection of norms, systems, and institutions underpinning this society-wide process of learning. The epistemic commons is a public resource; these spaces and norms are available to all of us, shaped by all of us, and in turn, also influence the way in which all of us engage in learning with each other. For informed and consensual decision-making, open societies and democratic governance depend upon an epistemic commons in which groups and individuals can collectively reflect and communicate in ways that promote mutual learning.
Inadvertent emotionally or politically -motivated closed-mindedness, manifesting as certainty or overconfidence when dealing with complex indeterminate problems. Epistemic hubris can appear in many forms. For example, it is often demonstrated in the convictions of individuals influenced by highly politicized groups, it shows up in corporate or bureaucratic contexts that err towards certainty through information compression requirements, and it appears in media, where polarized rhetoric is incentivized due to its attention-grabbing effects. Note: for some kinds of problems it may be appropriate or even imperative to have a degree of confidence in one's knowledge—this is not epistemic hubris.
An ethos of learning that involves a healthy balance between confidence and openness to new ideas. It is neither hubristic, meaning overly confident or arrogant, nor nihilistic, meaning believing that nothing can be known for certain. Instead, it is a subtle orientation that seeks new learning, recognizes the limitations of one's own knowledge, and avoids absolutisms or fundamentalisms—which are rigid and unyielding beliefs that refuse to consider alternative viewpoints. Those that demonstrate epistemic humility will embrace truths where these are possible to attain but are generally inclined to continuously upgrade their beliefs with new information.
This form of nihilism is a diffuse and usually subconscious feeling that it is impossible to really know anything, because, for example, “the science is too complex” or “there is fake news everywhere.” Without a shared ability to make sense of the world as a means to inform our choices, we are left with only the game of power. Claims of “truth” are seen as unwarranted or intentional manipulations, as weaponized or not earnestly believed in.
Epistemology is the philosophical study of knowing and the nature of knowledge. It deals with questions such as “how does one know?” and “what is knowing, known, and knowledge?”. Epistemology is considered one of the four main branches of philosophy, along with ethics, logic, and metaphysics.
Derived from a Greek word meaning custom, habit, or character; The set of ideals or customs which lay the foundations around which a group of people coheres. This includes the set of values upon which a culture derives its ethical principles.
The ability of an individual or group to shape the perception of an issue or topic by setting the narrative and determining the context for the debate. A “frame” is the way in which an issue is presented or “framed”, including the language, images, assumptions, and perspectives used to describe it. Controlling the frame can give immense social and political power to the actor who uses it because the narratives created or distorted by frame control are often covertly beneficial to the specific interests of the individual or group that has established the frame. As an example, politicians advocating for tax cuts or pro-business policies may use the phrase "job creators" when referring to wealthy corporations in order to suggest their focus is on improving livelihoods, potentially influencing public perception in favor of the politician's interests.
Discourse oriented towards mutual understanding and coordinated action, with the result of increasing the faith that participants have in the value of communicating. The goal of good faith communication is not to reach a consensus, but to make it possible for all parties to change positions, learn, and continue productive, ongoing interaction.
Processes that occupy vast expanses of both time and space, defying the more traditional sense of an "object" as a thing that can be singled out. The concept, introduced by Timothy Morton, invites us to conceive of processes that are difficult to measure, always around us, globally distributed and only observed in pieces. Examples include climate change, ocean pollution, the Internet, and global nuclear armaments and related risks.
Information warfare is a primary aspect of fourth- and fifth-generation warfare. It can be thought of as war with bits and memes instead of guns and bombs. Examples of information warfare include psychological operations like disinformation, propaganda, or manufactured media, or non-kinetic interference in an enemy's communication capacity or quality.
Refers to the foundational process of education which underlies and enables societal and cultural cohesion across generations by passing down values, capacities, knowledge, and personality types.
The phenomenon of having your attention captured by emotionally triggering stimuli. These stimuli strategically target the brain center that we share with other mammals that is responsible for emotional processing and arousal—the limbic system. This strategy of activating the limbic system is deliberately exploited by online algorithmic content recommendations to stimulate increased user engagement. Two effective stimuli for achieving this effect are those that can induce disgust or rage, as these sentiments naturally produce highly salient responses in people.
An online advertising strategy in which companies create personal profiles about individual users from vast quantities of trace data left behind from their online activity. According to these psychometric profiles, companies display content that matches each user's specific interests at moments when they are most likely to be impacted by it. While traditional advertising appeals to its audience's demographics, microtargeting curates advertising for individuals and becomes increasingly personalized by analyzing new data.
False or misleading information, irrespective of the intent to mislead. Within the category of misinformation, disinformation is a term used to refer to misinformation with intent. In news media, the public generally expects a higher standard for journalistic integrity and editorial safeguards against misinformation; in this context, misinformation is often referred to as “fake news”.
A prevailing school of economic thought that emphasizes the government's role in controlling the supply of money circulating in an economy as the primary determinant of economic growth. This involves central banks using various methods of increasing or decreasing the money supply of their currency (e.g., altering interest rates).
A form of rivalry between nation-states or conflicting groups, by which tactical aims are realized through means other than direct physical violence. Examples include election meddling, blackmailing politicians, or information warfare.
Open societies promote the free exchange of information and public discourse, as well as democratic governance based on the participation of the people in shared choices about their social futures. Unlike the tight control over communications and suppression of dissenting views that characterize closed societies, open societies promote transparent governance and embrace good-faith public scrutiny.
The modern use of the term 'paradigm' was introduced by the philosopher of science Thomas Kuhn in his work "The Structure of Scientific Revolutions". Kuhn's idea is that a paradigm is the set of concepts and practices that define a scientific discipline at any particular period of time. A good example of a paradigm is behaviorism – a paradigm under which studying externally observable behavior was viewed as the only scientifically legitimate form of psychology. Kuhn also argued that science progresses by the way of "paradigm shifts," when a leading paradigm transforms into another through advances in understanding and methodology; for example, when the leading paradigm in psychology transformed from behaviorism to cognitivism, which looked at the human mind from an information processing perspective.
The theory and practice of teaching and learning, and how this process influences, and is influenced by, the social, political, and psychological development of learners.
The ability of an individual or institutional entity to deny knowing about unethical or illegal activities because there is no evidence to the contrary or no such information has been provided.
First coined by philosopher Jürgen Habermas, the term refers to the collective common spaces where people come together to publicly articulate matters of mutual interest for members of society. By extension, the related theory suggests that impartial, representative governance relies on the capacity of the public sphere to facilitate healthy debate.
The word itself is French for rebirth, and this meaning is maintained across its many purposes. The term is commonly used with reference to the European Renaissance, a period of European cultural, artistic, political, and economic renewal following the middle ages. The term can refer to other periods of great social change, such as the Bengal Renaissance (beginning in late 18th century India).
A term proposed by sociologists to characterize emergent properties of social systems after the Second World War. Risk societies are increasingly preoccupied with securing the future against widespread and unpredictable risks. Grappling with these risks differentiate risk societies from modern societies, given these risks are the byproduct of modernity’s scientific, industrial, and economic advances. This preoccupation with risk is stimulating a feedback loop and a series of changes in political, cultural, and technological aspects of society.
Sensationalism is a tactic often used in mass media and journalism in which news stories are explicitly chosen and worded to excite the greatest number of readers or viewers, typically at the expense of accuracy. This may be achieved by exaggeration, omission of facts and information, and/or deliberate obstruction of the truth to spark controversy.
A process by which people interpret information and experiences, and structure their understanding of a given domain of knowledge. It is the basis of decision-making: our interpretation of events will inform the rationale for what we do next. As we make sense of the world and accordingly act within it, we also gather feedback that allows us to improve our sensemaking and our capacity to learn. Sensemaking can occur at an individual level through interaction with one’s environment, collectively among groups engaged in discussion, or through socially-distributed reasoning in public discourse.
A theory stating that individuals are willing to sacrifice some of their freedom and agree to state authority under certain legal rules, in exchange for the protection of their remaining rights, provided the rest of society adheres to the same rules of engagement. This model of political philosophy originated during the Age of Enlightenment from theorists including, but not limited to John Locke, Thomas Hobbes, and Jean-Jacques Rousseau. It was revived in the 20th century by John Rawls and is used as the basis for modern democratic theory.
Autopoiesis from the Greek αὐτo- (auto-) 'self', and ποίησις (poiesis) 'creation, production'—is a term coined in biology that refers to a system’s capability for reproducing and maintaining itself by metabolizing energy to create its own parts, and eventually new emergent components. All living systems are autopoietic. Societal Autopoiesis is an extension of the biological term, making reference to the process by which a society maintains its capacity to perpetuate and adapt while experiencing relative continuity of shared identity.
A fake online persona, crafted to manipulate public opinion without implicating the account creator—the puppeteer. These fabricated identities can be wielded by anyone, from independent citizens to political organizations and information warfare operatives, with the aim of advancing their chosen agenda. Sock puppet personas can embody any identity their puppeteers want, and a single individual can create and operate numerous accounts. Combined with computational technology such as AI-generated text or automation scripts, propagandists can mimic multiple seemingly legitimate voices to create the illusion of organic popular trends within the public discourse.
Presenting the argument of disagreeable others in their weakest forms, and after dismissing those, claiming to have discredited their position as a whole.
A worldview that holds technology, specifically developed by private corporations, as the primary driver of civilizational progress. For evidence of its success, adherents point to the consistent global progress in reducing metrics like child mortality and poverty while capitalism has been the dominant economic paradigm. However, the market incentives driving this progress have also resulted in new, sometimes greater, societal problems as externalities.
Used as part of propaganda or advertising campaigns, these are brief, highly-reductive, and definitive-sounding phrases that stop further questioning of ideas. Often used in contexts in which social approval requires unreflective use of the cliché, which can result in confusion at the individual and collective level. Examples include all advertising jingles and catchphrases, and certain political slogans.
A proposition or a state of affairs is impossible to be verified, or proven to be true. A further distinction is that a state of affairs can be unverifiable at this time, for example, due to constraints in our technical capacity, or a state of affairs can be unverifiable in principle, which means that there is no possible way to verify the claim.
Creating the image of an anti-hero who epitomizes the worst of the disagreeable group, and contrasts with the best qualities of one's own, then characterizing all members of the other group as if they were identical to that image.
Discussion
Thank you for being part of the Consilience Project Community.
0 Comments